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INTRODUCTION

Kelps (order Laminariales) are a major compo-
nent of nearshore, temperate marine communities 
(Steneck et  al.,  2002), where they provide habitat for 
other organisms (Teagle et  al.,  2017), modify their 
surrounding environment (Kennelly,  1989; Pfister 

et  al.,  2019), and increase coastal primary productiv-
ity (Pfister et  al.,  2019). Kelps are economically valu-
able, being farmed and harvested for food, livestock 
feed, and industrial materials (Ferdouse et  al.,  2018) 
and providing ecosystem services such as support-
ing other commercially valuable species (Bennett 
et al., 2016). At the same time, kelps are increasingly 
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Abstract
Culturing kelps for commercial, conservation, and scientific purposes is be-
coming increasingly widespread. However, kelp aquaculture methods are 
typically designed for ocean- based farms, and these methods may not be 
applicable for smaller scale cultivation efforts common in research and res-
toration. Growing kelps in closed, recirculating culture systems may address 
many of these constraints, yet closed system approaches have remained 
largely undescribed. Extensive declines of the bull kelp  (Nereocystis luet-
keana), an ecologically important canopy species in the Northeast Pacific, 
have received widespread attention and prompted numerous research and 
conservation initiatives. Here, we detail two approaches for cultivating N. luet-
keana sporophytes in closed recirculating systems. Nereocystis luetkeana 
were reared as attached thalli in custom seaweed growth flumes and also 
free- floating in tumble culture tanks. Careful control of stocking density, water 
motion, aeration, and nutrient levels allowed for rapid growth and normal mor-
phogenesis of laboratory- grown kelp. Culture systems reached up to 3 kg · 
m−3, and individual thalli attained lengths of up to 6 m before the trials were 
terminated. Our results demonstrate the potential of recirculating, closed 
culture systems to overcome limitations associated with traditional culture 
methods. Recirculating systems enable the precise control of culture condi-
tions, improving biosecurity and facilitating cultivar development and other 
research. Kelps can be grown away from the ocean or outside their native 
ranges, and seasonal or annual species can be produced year- round without 
seasonal constraints.
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threatened by anthropogenic activities (Filbee- Dexter 
& Wernberg,  2018), notably rising ocean tempera-
tures associated with climate change (Smale,  2020). 
Extensive, anthropogenically driven kelp declines 
have been documented in many areas of the world 
(Krumhansl et al., 2016), with severe ecological and so-
cioeconomic consequences for human and ecological 
communities (Norderhaug et al., 2020; Rogers- Bennett 
& Catton, 2019).

With increasing global awareness of the ecological 
value, economic potential, and anthropogenic threats 
facing kelps, kelp aquaculture for commercial, conser-
vation, and scientific purposes is becoming increas-
ingly widespread (Ebbing et al., 2022; Eger et al., 2022; 
Kim et  al.,  2017; Morris et  al.,  2020). Typically, kelps 
are first reared in land- based “hatcheries” before being 
outplanted at a small size (<2 cm) to nearshore ocean 
farms for “growing out” (Azevedo et  al.,  2016; Flavin 
et  al.,  2013). However, this approach has several im-
portant limitations. Ocean- based seaweed farms are 
subject to the vagaries of the natural environment, in-
cluding pathogens, herbivores, adverse environmental 
conditions, or the inherent seasonality of many culti-
vated species (Hafting et  al.,  2011; Kim et  al.,  2017). 
Furthermore, farms sometimes operate at large scales, 
which may lead to conflicts with other marine commer-
cial or recreational activities (Flavin et al., 2013; Hafting 
et al., 2011) as well as environmental impacts on sen-
sitive coastal habitats (Grebe et al., 2019). Finally, the 
limited biosecurity of ocean- based farms presents a 
persistent concern over the potential for cultivated kelp 
to impact natural populations (Cottier- Cook et al., 2016; 
Goecke et al., 2020; Grebe et al., 2019).

To mitigate the problems of ocean- based farming, at-
tempts have been made to move the cultivation of kelp 
and other seaweeds onto land (Gadberry et al., 2018; 
Sato et al., 2017; Swanson & Fox, 2007). Land- based 
cultivation systems generally rely on the continuous 
“flow- through” circulation of seawater pumped in from 
the ocean to replenish nutrients and remove waste 
products (Schmitz & Kraft, 2022). Although land- based 
“flow through” kelp cultivation may allow for greater 
control over culture conditions and reduce the impact 
of seaweed farming on marine habitats, they require 
specialized, expensive infrastructure to draw seawater 
on shore (Hafting et al., 2011). Because of their reliance 
on a continuous supply of natural seawater, they must 
be situated on shorefront land, which is expensive and 
may result in land- use conflicts (Hafting et  al.,  2011). 
These limitations are particularly relevant for smaller 
scale efforts such as kelp research, cultivar develop-
ment, or restoration, which may require the cultivation 
of kelp under highly controlled conditions, close moni-
toring, and limited resources (Hafting et al., 2011).

Growing kelps in closed, recirculating systems 
may address many issues associated with traditional 
ocean- based and land- based flow- through approaches 

(Schmitz & Kraft, 2022; Sebök et al., 2017). Recirculating 
culture systems have been used to cultivate many mi-
croalgae and macroalgae (e.g., Borowitzka,  1999; 
Friedlander & Levy,  1995), but the cultivation of kelp 
sporophytes in recirculating systems has remained 
rare for thalli larger than a few centimeters (Boderskov 
et al., 2016; Peteiro et al., 2014; Redmond et al., 2014; 
Westermeier et  al.,  2006). In recirculating cultures, 
maintaining the quality of the culture medium without 
continuously replenishing seawater can be a major chal-
lenge (Schmitz & Kraft, 2022). Moreover, the large size 
and specific environmental demands of kelps also re-
quire special consideration (Charters & Neushul, 1979; 
Winberg et al., 2011). However, if these obstacles can 
be overcome, recirculating culture of kelp sporophytes 
could enable even greater control over cultural condi-
tions, permit year- round cultivation of seasonal spe-
cies, and expand research possibilities at institutions 
without direct ocean access.

The bull kelp, Nereocystis luetkeana, is an eco-
logically important canopy forming species in the 
Northeast Pacific (Berry et al., 2021; Schiltroth, 2021). 
Extensive, climate- driven declines of N. luetkeana have 
received widespread attention and prompted numer-
ous research and conservation initiatives (Beas- Luna 
et  al.,  2020; Berry et  al.,  2021; Carney et  al.,  2005; 
Oster et al., 2020; Pfister et al., 2018; Rogers- Bennett 
& Catton,  2019; Schroeder et  al.,  2020; Springer 
et  al.,  2006). The ability to cultivate N. luetkeana in 
land- based, recirculating systems could facilitate re-
search and conservation efforts, but until now has yet 
to be successfully accomplished, with previous land- 
based cultivation trials relying upon flow- through sea-
water systems (Amsler & Neushul,  1989; Swanson & 
Fox, 2007). Within the framework of a wider study on 
N. luetkeana ecophysiology, we trialed the cultivation of 
large (>2 cm) N. luetkeana sporophytes in recirculating 
culture. Here, we describe two successful approaches: 
(1) attached cultures on ceramic tiles in custom “growth 
flumes” and (2) freely floating tumble cultures driven by 
aeration.

MATERIALS AND METHODS

Gametophyte culture

Mature Nereocystis luetkeana sori were collected from 
wild sporophytes and transported to the University of 
British Columbia (UBC), where the sori were induced 
to release spores following published protocols (Flavin 
et al., 2013). In brief, sori were gently scraped with a 
dull knife to remove macroscopic epibionts, cleaned 
with a 30- s dip in commercially available 3% povidone- 
iodine solution, rinsed with chilled autoclaved natural 
seawater, and then layered between dry paper tow-
els for 24 h in an incubator at 10°C. Cleaned sori were 
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then induced to release spores by being immersed in 
autoclaved natural seawater kept at 10°C. The result-
ant spore solution was diluted to a spore density of 
3000 spores · mL−1 to accelerate gametogenesis and 
reduce sporophyte competition (Ebbing et  al.,  2020; 
Reed et al., 1991; Tatsumi et al., 2022). The spore so-
lution was poured into 10- L glass aquaria containing 
autoclaved ceramic tiles and glass cover slips as set-
tlement substrates. Glass cover slips were chosen as 
a settlement substrate as their transparency facilitated 
the monitoring of gametophyte development, and their 
smoothness allowed sporophytes to be scraped off for 
subsequent tumble culture. On the other hand, ceramic 
tiles were easy to handle due to their large size and 
negative buoyancy, and they more closely mimicked a 
natural substrate conducive to growing larger sporo-
phytes. Additional ceramic tiles and glass cover slips 
were inoculated separately with gametophyte frag-
ments from 1-  to 2- year- old stock cultures maintained 
under red light to inhibit gametogenesis when sori were 
not available (e.g., during the winter). Gametophyte bio-
mass from stock cultures was gathered in a 1.5- mL mi-
crocentrifuge tube and fragmented with a pellet pestle. 
The fragments were diluted with autoclaved seawater 
and distributed over the settlement substrates in the 
same manner as with fresh spores.

After inoculation, gametophyte fragments and 
spores were placed in a dark incubator and allowed to 
settle and germinate on the substrates for 24 h at 10°C, 
before being transferred to 10- L glass aquaria inside 
a climate- controlled growth chamber (Conviron). In the 
aquaria, the gametophytes were cultured under white 
LED light (16:8 day:night photoperiod) at an irradiance 
of 15 μmol photons · m−2 · s−1 for the first 2 days to avoid 
photoinhibition, at 30 μmol · m−2 · s−1 for days 2–7, and 
at 50 μmol · m−2 · s−1 thereafter (Flavin et al., 2013). The 
temperature was maintained at 12 ± 2°C based on pub-
lished Nereocystis luetkeana thermal tolerance curves 
(Supratya et al., 2020). The culture medium initially was 
autoclaved natural seawater (salinity 32, pH 7.9–8.1) 
enriched to f/2 medium (Guillard, 1975), but the nutrient 
concentration was subsequently halved (=f/4) to reduce 
the growth of competing microorganisms in the culture. 
The culture medium was fully replaced every 2 weeks, 
a compromise between promoting rapid gametophyte 
development and managing the increased risk of cul-
ture contamination during media replacement. Under 
these culture conditions, growing gametophytes were 
visible to the naked eye as a brown film on the settle-
ment substrates within 1 week, and microscopic sporo-
phytes were detected after 2–3 weeks.

Sporophyte culture

While Nereocystis luetkeana gametophytes and young 
sporophytes up to ~0.5 cm thrived under established 

kelp culture protocols, further sporophyte development 
required careful control of specific cultural conditions. 
Initial attempts to culture sporophytes based on pub-
lished methods for other kelp species (e.g., Redmond 
et al., 2014) experienced severe mortality due to thallus 
necrosis when sporophytes reached ~1 cm in length. 
As similar patterns of tissue necrosis in open water and 
flow- through seaweed cultures are known to be caused 
by opportunistic bacterial infections under stressful con-
ditions (Friedlander & Levy, 1995; Ward et al., 2020), 
we hypothesized that the tissue degradation observed 
in our cultures was also due to the overgrowth of op-
portunistic bacteria. We experimented with published 
strategies to reduce microbial loading in recirculating 
algae cultures (Friedlander & Levy, 1995) and identified 
conditions necessary to maintain N. luetkeana in recir-
culating culture. Nutrient levels were reduced to a quar-
ter (=f/8) or an eighth (=f/16) of the initial full- strength 
f/2. To minimize the accumulation of particulate matter, 
metabolic wastes and the depletion of nutrients, the 
culture medium was fully replaced at least once per 
week. As high stocking densities appeared to greatly 
increase thallus necrosis, a low stocking density of 
≤3 kg · m−3 was accomplished by inspecting and thin-
ning the cultures at least weekly, removing up to half of 
the culture biomass.

Tumble culture

To produce free- floating sporophytes, cover slips pre-
viously settled with spores or gametophyte fragments 
were scraped with a razor blade when sporophytes 
became visible. Detached sporophytes and game-
tophytes were then transferred to non- sterile 26.5- L 
tumble culture vessels (FerMonster™ homebrewing 
fermenter; Figure 1a) in which water motion and aera-
tion were provided by custom- made weighted aquarium 
bubblers. All sporophyte culture vessels were filled with 
natural seawater (salinity 28–33, pH 7.9–8.1), which 
was transported to UBC via tanker truck. The irradi-
ance was maintained at 60–80 μmol photons · m−2 · s−1 
(16:8 day:night photoperiod), while the temperature was 
maintained at 12 ± 0.5°C. Each week, the culture was 
strained through a quarter- inch (0.64 cm) mesh, and re-
tained thalli (generally 2–5 cm long) were transferred 
to 600- L cylindrical flat- bottomed fiberglass tanks 
(Figure 1b). The design of the culture tanks was loosely 
based on published tank designs for land- based flow 
through culture (Sato et al., 2017), with a ring- shaped 
air bubbler surrounding a central drain pipe providing 
water motion and aeration (Figure 1c; Video S1 in the 
Supporting Information). The tanks were maintained 
at 12 ± 1°C by commercially available chillers (Ecoplus 
1/4HP), which received water through the central drain-
pipe before recirculating the water back into the tanks. 
The irradiance in the large tanks ranged between 30 
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and 50 μmol photons · m−2 · s−1 (16:8 day:night photoper-
iod), and transparent plastic lids reduced evaporation.

Each week, the length and developmental stage of 
the 5–10 largest individual sporophytes were recorded. 
Additionally, the aggregate live biomass in the 600- L 
tumble tanks was weighed before and after culture 
maintenance and thinning to calculate the maximum 
stocking density and daily relative growth rate (RGR). 
To measure live mass, the culture was netted out and 
allowed to drip- dry for 20 min in a climate- controlled in-
cubator. The daily RGR was then calculated with the 
following formula (Gao et al., 2017):

where Wi is the initial wet mass, Wf is the final wet mass 
and t is the number of days between Wi and Wf (in this 
case, t = 7 d).

Attached culture

Ceramic tiles previously settled with gametophytes 
were left in the original 10- L aquaria to continue grow-
ing. When sporophytes became visible to the naked 
eye, the irradiance was increased to 60–80 μmol pho-
tons · m−2 · s−1 (16:8 day:night photoperiod), and water 
motion and aeration were provided with an aquarium 
bubbler from this point onwards. When sporophytes 
reached 5–10 mm length, the tiles were transferred 
into custom, programmable “growth flumes” capable 
of reproducing complex bidirectional water motion, 

temperature, and light, to emulate natural marine en-
vironments (COANDA; Figure  2). The flumes had a 
capacity of 200 L and were fully recirculating (i.e., not 
connected to a flow- through seawater system). As we 
observed that irregular (i.e., non- unidirectional) water 
flow appeared to be crucial for normal morphogenesis, 
juvenile sporophytes were grown in a symmetrical os-
cillating flow regime with a periodicity of ~30 s and a 
peak flow of 0.2 m · s−1, increased to 0.4 m · s−1 when 
the sporophytes reached 10 cm length and 0.6 m · s−1 
as the sporophytes reached 0.5 m length (Video  S2; 
Figure  S1 in the Supporting Information). Flume cul-
tures were sometimes supplemented with free- floating 
sporophytes from tumble cultures, which were attached 
to various substrates using zip ties, by braiding their 
holdfasts into rope (Westermeier et  al.,  2006) or by 
blotting holdfasts dry and attaching them onto tiles with 
cyanoacrylate glue (Krazy glue® gel). All methods of 
attachment were successful, and new haptera formed 
rapidly and naturally attached to the substrate. The irra-
diance in the growth flumes was initially maintained at 
60–80 μmol photons · m−2 · s−1, but the irradiance was 
increased to 120–150 μmol · m−2 · s−1 when the sporo-
phytes reached 0.5 m length and 250–300 μmol · m−2 · 
s−1 when the sporophytes started exceeding 1 m length. 
As the sporophytes exceeded 0.5 m and outgrew the 
length of the flume working section, the pneumatocysts 
were harnessed to one end of the tank to allow the 
blades and stipe to continue elongating without abrad-
ing against the tank walls (Figure S2; Video S2 in the 
Supporting Information). The harnesses were made of 
commercially available airline tubing and did not dam-
age the kelp. To accommodate the attachment of the 

RGR
(

%day−1
)

= ln

(

Wf

Wi

)

×
100

t

F I G U R E  1  Cultivation of Nereocystis luetkeana in closed tumble culture. (a) Initial 26.5- L tumble culture vessels with juvenile 
sporophytes. (b) Six- hundred- L cylindrical tumble culture tank for growing out sporophytes. (c) Schematic view of the 600- L tumble culture 
tank, including (1) incoming water from chiller unit, (2) pressurized air driving bubblers, (3) light source, (4) central standpipe with mesh 
drain, (5) air bubbler ring providing aeration and water motion, (6) outflow to chiller unit, and (7) drain valve. Arrows indicate water motion. 
[Color figure can be viewed at wileyonlinelibrary.com]
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kelp thalli to one side of the tank while maintaining 
oscillating flow, an asymmetric flow regime was pro-
grammed. Water flow was mostly unidirectional from 
the side of the flume that had the attached thalli to the 
side without attached thalli. Approximately every 15 s 
however, the flow briefly reversed for just long enough 
to fold and bend the kelp blades without pressing them 
against the end of the flumes (Video S2; Figure S1). To 
avoid the blades of the anchored thalli from growing 
into the opposite end of the flumes, the flumes were 
inspected daily, and the tips of the rapidly growing 
blades were trimmed as needed. To prevent the elon-
gating stipe from entangling the blades, it was tightly 
coiled and tied to the bottom of the flume working sec-
tion. The length and developmental stage of the 5–10 
largest individual sporophytes were recorded weekly, 
and the daily RGR was calculated as described above.

RESULTS AND DISCUSSION

Microscopic sporophytes were observed during rou-
tine culture inspection 2–3 weeks after inoculation with 
spores or gametophyte fragments (T0; see Figure 3a). 
In tumble culture, young sporophytes became visible 
to the naked eye (~1–2 mm) 2 weeks after T0, reached 
0.5 cm length after 4 weeks, and 10 cm length after 
6 weeks (Figure 3a). On ceramic tiles, sporophytes be-
came visible to the naked eye 4 weeks after T0, reached 
0.5 cm length after 6 weeks, and 10 cm length after 
8 weeks (Figure  3a). A distinct stipe became visible 
by around 5 cm length. At approximately 10 cm length, 
rootlike haptera began developing above the initial dis-
coid holdfast in both attached and freely floating thalli. 
The nascent pneumatocyst also became visible as a 

small bump at the junction between the blade base and 
the stipe, subsequently forming a gas- filled cavity at 
10–15 cm length. The blade splitting process was first 
observed after 8 weeks in tumble culture and 10 weeks 
on tiles at 15–20 cm length, though lines of dehiscence 
were often already visible on much smaller thalli.

Nereocystis luetkeana sporophytes grown in tum-
ble culture were culled after they became too buoyant 
to submerge and tumble at approximately 10 weeks of 
age, a pneumatocyst diameter of around 2 cm, and a 
thallus length of around 40 cm. This size was more than 
large enough for the intended ecophysiological and de-
velopmental research, and we did not attempt to over-
come this physical limitation. However, removing the 
stipe and a portion of the pneumatocyst could have al-
lowed for even further growth by eliminating buoyancy 
and entanglement (Graham et  al.,  2023). Unlike the 
tumble culture sporophytes, the sporophytes on tiles in 
the flumes were allowed to develop further, ultimately 
attaining lengths of 3–6 m within 4 months, vastly out-
growing our initial objective of producing >2 cm thalli in 
recirculating culture (Figure 3b,c).

In larger (>1 m) flume- grown sporophytes, indi-
vidual thalli exhibited growth rates of 2.0% ± 0.9% · 
d−1 (mean ± SD, n = 14) or, in absolute terms, a daily 
length increase of 4.3 ± 2.0 cm. These growth rates 
are similar to those measured in comparably sized 
wild Nereocystis luetkeana (Duncan,  1973; Kain 
(Jones,  1987; Nicholson,  1970), as well as N. luet-
keana cultivated in flow- through systems (Swanson & 
Fox, 2007). However, as this length does not account 
for the daily trimming of blade tips to avoid abrasion 
(up to 5 cm · d−1), it is a potentially substantial underes-
timate of N. luetkeana growth performance in recircu-
lating systems. In the 600- L tumble cultures, the mean 

F I G U R E  2  Cultivation of Nereocystis luetkeana on ceramic tiles in custom flumes. (a) Square ceramic tiles seeded with N. luetkeana 
spores or gametophyte fragments, now densely covered in young sporophytes. (b) Tiles in a flume with larger sporophytes. Note the 
continuous recruitment of younger sporophytes. (c) Schematic view of a 200- L recirculating flume, including (1) light source, (2) flow 
straightening baffles, (3) working section, (4) propeller driving water motion, (5) outflow to chiller, (6) drain valve, and (7) inflow from chiller. 
Arrows indicate water motion. [Color figure can be viewed at wileyonlinelibrary.com]
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daily RGR of aggregate biomass was 11.9% ± 4.3% 
(mean ± SD, n = 10). In other words, overall biomass 
increased by a factor of 2.4 ± 0.9 each week. The 
mean stocking density immediately prior to weekly 
thinning was 1.85 ± 1.09 kg · m−3 (n = 10), though a 
stocking density of up to 3 kg · m−3 could be attained 
without apparent detriment to the health and growth 
of the sporophytes. However, sporophytes exhibited 
rapid degradation followed by a complete collapse of 
the culture when it once exceeded 4 kg · m−3. Both 
tumble and tile cultures responded to the removal of 
large sporophytes by producing repeated flushes of 
new sporophytes without further inoculation; inocu-
lated ceramic tiles and 26.5- L “seed” tumble cultures 
produced a continuous supply of sporophytes for at 
least 6 months until the cultures were terminated for 
unrelated reasons.

Water motion markedly influenced morphogene-
sis. Young thalli that had experienced low or unidi-
rectional water flow sometimes exhibited a persistent 
delay in blade splitting that resulted in abnormally 
broad blades even after strong oscillating flow had 
been restored (Figure 4a). Kelps growing attached on 
tiles in the flume tended to develop long stipes, while 
kelps moving freely in tumble culture tended to de-
velop short stipes with relatively large pneumatocysts 
(Figure 4c). “Harnessing” kelps, which prevented their 
holdfasts from experiencing significant tensile forces, 
appeared to stunt holdfast development (Figure 3b,c). 
The observed effects of different flow regimes on the 
morphogenesis of cultured Nereocystis luetkeana are 

consistent with the remarkable phenotypic plasticity 
kelps are known to exhibit in response to water mo-
tion (Coleman & Martone,  2020; Koehl et  al.,  2008; 
Supratya et al., 2020).

Thallus degradation was a significant initial challenge 
to cultivating Nereocystis luetkeana in closed systems. 
Sporophytes degraded rapidly under suboptimal cul-
ture conditions, such as stocking densities >3 kg · m−3, 
excessively high or low nutrient levels, stagnant flow, 
delayed media changes, and temperature fluctuations 
(e.g., temperature spikes due to power outages). Thalli 
developed pale, necrotic lesions generally starting 
from the distal end of the blade, which progressively 
spread and could consume the entire thallus as quickly 
as 24–48 h after the first visible signs. Thallus necrosis 
was often accompanied by foam on the water's surface 
and discoloration of the culture medium as culture con-
ditions worsened. For short- term stress events such as 
pump or chiller failures, necrosis was often not imme-
diately apparent, but manifested within 24–48 h. While 
sporophytes of all developmental stages could exhibit 
necrosis, larger sporophytes >20 cm length seemed 
less sensitive than smaller sporophytes, and often re-
mained healthy even as smaller thalli in mixed- size cul-
tures deteriorated.

Although we did not attempt to isolate or identify any 
potential pathogens, the observed triggers, symptoms, 
and solutions were consistent with opportunistic bacterial 
infections documented in other recirculating macroalgal 
cultures (Friedlander & Levy, 1995; Ward et al., 2020). 
Many kelp- associated bacteria are capable of degrading 

F I G U R E  3  (a) Approximate growth and developmental timeline of cultivated Nereocystis luetkeana under two different culture 
approaches. Week 0 represents the time at which microscopic sporophytes were first observed, not the time of culture inoculation. Note 
that the y- axis is on a logarithmic scale. (b, c) Large kelp sporophytes produced in attached culture. Note the relatively small holdfasts of the 
lab- grown harnessed kelp. The rulers next to the kelps are 1 m in length. [Color figure can be viewed at wileyonlinelibrary.com]
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kelp cell wall constituents (Bengtsson et  al.,  2011; Lin 
et al., 2018). In a closed system, a high density of kelp, 
kelp- derived organic matter, and added nutrients drive 
the excessive proliferation of cell wall degrading bacteria 
(Goecke et al., 2010; Weinberger et al., 1994), especially if 
immune responses are suppressed by stress (Campbell 
et al., 2011). Alternatively, high levels of compounds de-
rived from microbial degradation of kelp tissue (e.g., oli-
gosaccharides) could trigger strong immune responses 
with the side effect of accelerating tissue senescence 
and necrosis (Goecke et al., 2010; Wang et al., 2019). 
As in closed- system cultures of red algae (Friedlander & 
Levy, 1995), thallus degradation was avoidable or in mild 
cases, reversible by removing necrotic tissue or excess 
biomass and ensuring that the culture medium remained 
fresh and aerated.

Other kelp species have been raised in recirculat-
ing culture systems (Boderskov et  al.,  2016; Peteiro 
et  al.,  2014; Redmond et  al.,  2014; Westermeier 
et  al.,  2006), and Nereocystis luetkeana has been 
grown in land- based flow- through culture (Amsler 
& Neushul,  1989; Graham et  al.,  2023; Swanson & 
Fox, 2007). However, to our knowledge our culture tri-
als represent the first instance of N. luetkeana being 
successfully grown to large sizes (>1 m) in recirculating 
culture. Furthermore, they demonstrate the potential of 
recirculating systems to create new opportunities in re-
search and restoration by overcoming some limitations 
of traditional kelp culture methods (Kim et  al.,  2017). 
Conditions can be precisely controlled, permitting year- 
round “on demand” cultivation independent of the natu-
ral environment (Hafting et al., 2011) and facilitating the 
development of kelp as model systems to further scien-
tific understanding of their morphogenesis, physiology, 
genetics, life histories, and partnerships with microbes. 

Due to the physical isolation from the ocean, stronger 
biosecurity measures can be implemented to avoid in-
troducing pests to the culture or to prevent the escape 
of non- native culture species (Schmitz & Kraft, 2022). 
Perhaps most importantly, closed culture systems are 
not reliant on suitable kelp farming locations, direct 
proximity to the ocean, or flow- through infrastructure, 
highlighting their potential for increasing the accessibil-
ity of kelp research.

Although our culture trials highlighted key ad-
vantages of recirculating cultures, we ultimately re-
mained reliant on a steady supply of natural seawater. 
Implementing steps to extend the life of the culture me-
dium, such as physical filtration and UV sterilization, 
could vastly reduce the amount of natural seawater 
required and the labor involved in culture maintenance 
(Schmitz & Kraft, 2022; Wold et al., 2014). Using arti-
ficial seawater could further reduce or even eliminate 
reliance on natural seawater (Sebök et al., 2017), al-
though artificial mixes must be carefully chosen to 
ensure that trace elements required by seaweeds 
are present in appropriate proportions (Redmond 
et al., 2014).
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Additional supporting information can be found online 
in the Supporting Information section at the end of this 
article.
Figure S1. Sample oscillating flow profile cycles for 
cultivating Nereocystis luetkeana sporophytes in 
recirculating flumes. (a) symmetrical oscillation for small 
sporophytes <0.5 m long. (b) Asymmetrical oscillation 
for larger sporophytes ≥0.5 m long.
Figure S2. Closeup of kelp harnesses.
Video S1. Nereocystis luetkeana tumble culture in a 
600- L cylindrical vessel.
Video S2. Large (>1 m) Nereocystis luetkeana in a 
recirculating growth flume.
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